TensorCircuit: a Quantum Software Framework for the NISQ Era

 
TensorCircuit is an open source quantum circuit simulator based on tensor network contraction, designed for speed, flexibility and code efficiency. Written purely in Python, and built on top of industry-standard machine learning frameworks, TensorCircuit supports automatic differentiation, just-in-time compilation, vectorized parallelism and hardware acceleration. These features allow TensorCircuit to simulate larger and more complex quantum circuits than existing simulators, and are especially suited to variational algorithms based on parameterized quantum circuits. TensorCircuit enables orders of magnitude speedup for various quantum simulation tasks compared to other common quantum software, and can simulate up to 600 qubits with moderate circuit depth and low-dimensional connectivity. With its time and space efficiency, flexible and extensible architecture and compact, userfriendly API, TensorCircuit has been built to facilitate the design, simulation and analysis of quantum algorithms in the Noisy Intermediate-Scale Quantum (NISQ) era.
TensorCircuit是一个基于张量网络收缩的开源量子电路模拟器,旨在实现速度、灵活性和代码效率。该模拟器完全使用Python编写,并构建在行业标准的机器学习框架之上,支持自动微分、即时编译、向量化并行和硬件加速。这些功能使得TensorCircuit能够模拟比现有模拟器更大、更复杂的量子电路,并特别适用于基于参数化量子电路的变分算法。与其他常见的量子软件相比,TensorCircuit能够在各种量子模拟任务中实现数量级的加速,并且可以模拟高达600个量子比特的电路深度和低维连接。拥有时间和空间效率、灵活可扩展的架构以及紧凑、用户友好的API,TensorCircuit已经被构建成为在噪声中间尺度量子(NISQ)时代设计、模拟和分析量子算法的工具。
 
 
 
 
  • Giscus
quantum
literature base
video notes